Contributions of Lattice Theory to the Study of Computational Topology

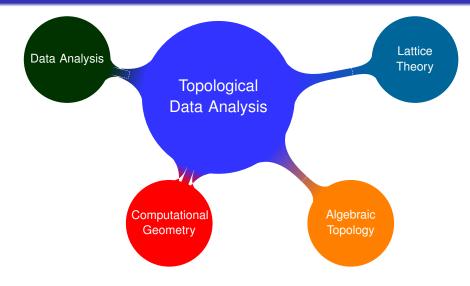
João Pita Costa

in a joint work with Mikael Vejdemo-Johansson and Primož Škraba

AAA88 Conference,

Warsaw, June 20, 2014 www.joaopitacosta.com/aaa88

Motivations



Heyting Algebras

Algebra of Lifetimes

The Dual Space

A Persistence Topos

Topological Data Analysis

Heyting Algebras

Algebra of Lifetimes

The Dual Space

< D > < D > <</p>

A Persistence Topos

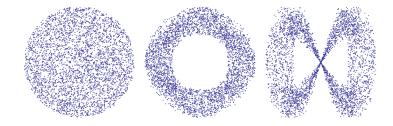
Heyting Algebras

Algebra of Lifetimes

The Dual Space

< ロ > < 団 > < 巨 >

A Persistence Topos



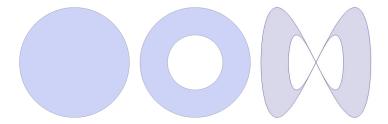
Heyting Algebras

Algebra of Lifetimes

The Dual Space

< 口 > < 同 >

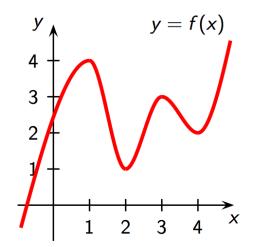
A Persistence Topos



э.

æ

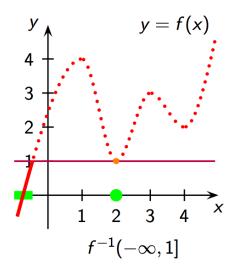
A Persistence Topos



< (17) > <

æ

A Persistence Topos



Heyting Algebras

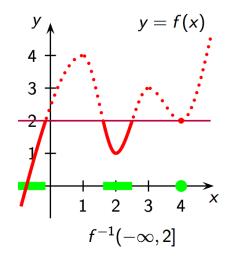
Algebra of Lifetimes

The Dual Space

< 口 > < 同 >

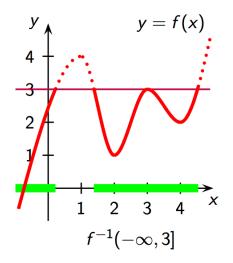
ъ

A Persistence Topos



∢ ≣⇒

A Persistence Topos



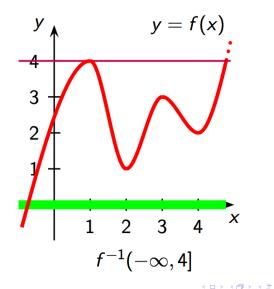
Heyting Algebras

Algebra of Lifetimes

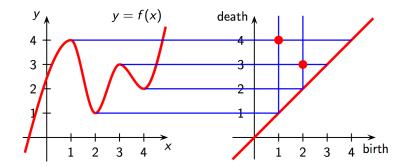
The Dual Space

A Persistence Topos

∢ ≣⇒



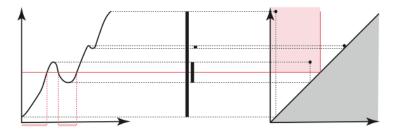
ъ



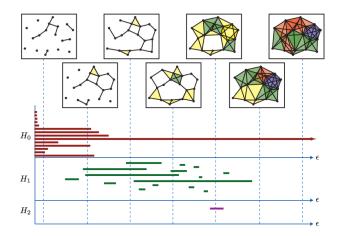
< D > < A </p>

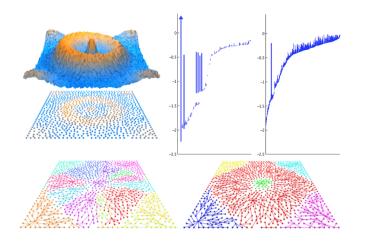
Persistent Homology

Persistence of H_0 of sublevel-sets of a real function.

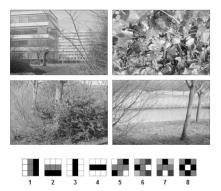


Mikael Vejdemo-Johansson, Sketches of a platypus: persistence homology and its foundations. arXiv:1212.5398v1 (2013)



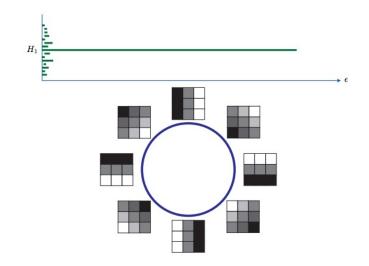


Application: Image Analysis

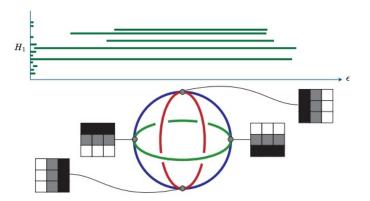


・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Persistent Homology



R. Ghrist, Barcodes: the persistent topology of data. Bulletin of the American Math. Soc. 45.1 (2008): 61-75.



R. Ghrist, Barcodes: the persistent topology of data. Bulletin of the American Math. Soc. 45.1 (2008): 61-75.

Application: Tumor Detection

Heyting Algebras

A **Boolean algebra** $(L; \land, \lor, \neg, 0, 1)$ is a distributive lattice $(L; \land, \lor)$ with bounds 0 and 1 such that all elements $x \in L$ have complement y(noted $\neg x$) satisfying $x \land y = 0$ and $x \lor y = 1$.

A **Heyting algebra** $(L; \land, \lor, \Rightarrow)$ is a distributive lattice $(L; \land, \lor)$ such that for each pair $a, b \in L$ there is a greatest element $x \in L$ (noted $a \Rightarrow b$) such that $a \land x \leq b$. The **pseudo complement** of $x \in L$ is $x \Rightarrow 0$ (often also noted by $\neg x$).

Example

Every Boolean algebra is a Heyting algebra with $a \Rightarrow b = \neg a \lor b$ and $a \Rightarrow 0 = \neg a$. The open sets of a topological space *X* constitute a complete Heyting algebra with $A \Rightarrow B = int((X - A) \cup B)$.

Heyting Algebras

The collection of all open subsets of a topological space X forms a complete Heyting algebra.

Heyting algebra H

 $U \land V$ $U \lor V$ 01 $U \Rightarrow V$ $\neg U$

Topological space *X*

∃ ► < ∃ ►</p>

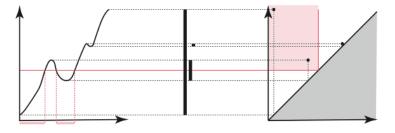
< D > < A </p>

$$egin{aligned} U \cap V \ U \cup V \ \phi \ X \ int((X-U) \cup V \ int(X-U) \ \end{pmatrix} \end{aligned}$$

イロト イ団ト イヨト イヨト

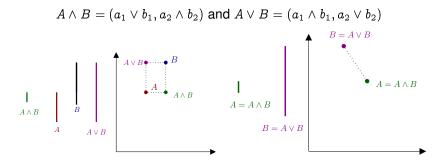
э

Algebra of Lifetimes

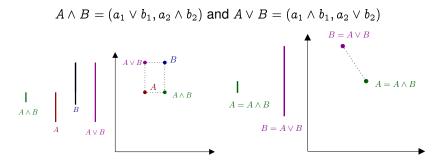


Mikael Vejdemo-Johansson, Sketches of a platypus: persistence homology and its foundations. arXiv:1212.5398v1 (2013)

Definition. Consider the complete lattice $(\mathbb{R}; \land, \lor)$. Let *A* and *B* be intervals $A = \mathcal{B}(a_1, a_2)$ and $B = \mathcal{B}(b_1, b_2)$ represented in a persistence diagram by the points $A(a_1, a_2)$ and $B(b_1, b_2)$ in \mathcal{H} . Define:



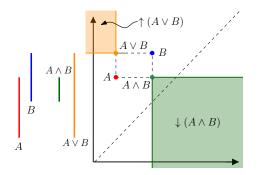
Definition. Consider the complete lattice $(\mathbb{R}; \land, \lor)$. Let *A* and *B* be intervals $A = \mathcal{B}(a_1, a_2)$ and $B = \mathcal{B}(b_1, b_2)$ represented in a persistence diagram by the points $A(a_1, a_2)$ and $B(b_1, b_2)$ in \mathcal{H} . Define:



 $\ensuremath{\mathcal{H}}$ is a Heyting algebra.

Ordering bars in ${\mathcal H}$

 $A \leq B$ iff $A \wedge B = A$ iff $b_1 \leq a_1$ and $a_2 \leq b_2$ iff $\mathcal{B}(A) \subseteq \mathcal{B}(B)$.

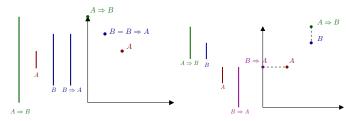


.

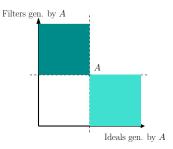
Algebra of Lifetimes

$$\mathsf{f} \ A \leq B, \mathsf{then} \ A \Rightarrow B = \begin{cases} 1 = (0, \varepsilon_2) & \text{, if } b_1 \leq a_1 \text{ and } a_2 \leq b_2 \\ B = (b_1, b_2) & \text{, if } a_1 \leq b_1 \text{ and } b_2 \leq a_2 \end{cases}$$

$$\text{Otherwise, } A \Rightarrow B = \begin{cases} (b_1, \varepsilon_2) & \text{, if } a_1 \leq b_1 \text{ and } a_2 \leq b_2 \\ (0, b_2) & \text{, if } b_1 \leq a_1 \text{ and } b_2 \leq a_2 \end{cases}$$



Assuming that \mathcal{H} is bounded by (0,0) and $(\varepsilon_1, \varepsilon_2)$:



Filter gen. by a bar A: $\uparrow A = [0, a_1] \times [a_2, \varepsilon_2]$. Ideal gen. by a bar A: $\downarrow A = [a_1, \varepsilon_1] \times [0, a_2]$.

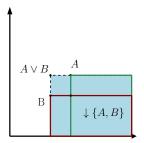
The poset \mathcal{H} together with the operations

$$\bigwedge_i A_i = (\bigvee \{ a_{1i} \}, \bigwedge \{ a_{2i} \}) \text{ and } \bigvee_i A_i = (\bigwedge \{ a_{1i} \}, \bigvee \{ a_{2i} \}).$$

is a complete Heyting algebra. In particular, \mathcal{H} is completely distributive, i.e., the following identity holds

$$X \wedge \bigvee_{i \in I} Y_i = \bigvee_{i \in I} (X \wedge Y_i).$$

Ideal gen. by bars A and B: $[min\{a_1, b_1\}, \varepsilon_1] \times [0, \max\{a_2, b_2\}]$. Filter gen. by bars A and B: $[0, \max a_1, b_1] \times [\min\{a_2, b_2\}, \varepsilon_2]$.

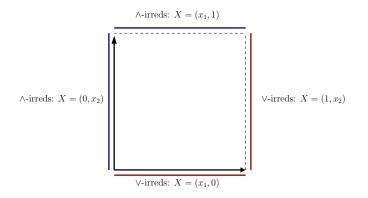


Ideal gen. by a family $\{A_i\}_{i \in I}$: $\downarrow \{A_i\}_{i \in I} = \downarrow \bigvee_{i \in I} A_i = [\min\{a_i\}, \varepsilon_1] \times [0, \max\{a_i\}]$ Filter gen. by a family $\{A_i\}_{i \in I}$: $\uparrow \{A_i\}_{i \in I} = \uparrow \bigwedge_{i \in I} A_i = [0, \max\{a_i\}] \times [\min\{a_i\}, \varepsilon_2].$

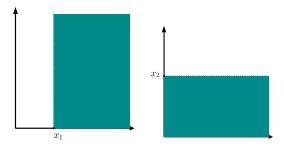
x is join-irreducible if $x = y \lor z$ implies x = y OR x = z*x* is meet-irreducible if $x = y \land z$ implies x = y OR x = z

Join-irreducibles of \mathcal{H} : bars with coordinates $(x_1, 0)$ or (ε_1, x_2) . Meet-irreducibles of \mathcal{H} : bars with coordinates $(0, x_2)$ or (x_1, ε_2) .

Join-irreducibles of \mathcal{H} : bars with coordinates $(x_1, 0)$ or (ε_1, x_2) . Meet-irreducibles of \mathcal{H} : bars with coordinates $(0, x_2)$ or (x_1, ε_2) .



An ideal *I* of *L* is a **prime ideal** if for all $x, y \in L, x \land y \in I$ implies $x \in I$ or $y \in I$. Join-irreducibles of \mathcal{H} : bars with coordinates $(x_1, 0)$ or $(1, x_2)$. $\downarrow (x_1, \varepsilon_2) = [x_1, \varepsilon_1] \times [0, \varepsilon_2]$ and $\downarrow (0, x_2) = [0, \varepsilon_1] \times [x_2, \varepsilon_2]$ are prime ideals of \mathcal{H} .

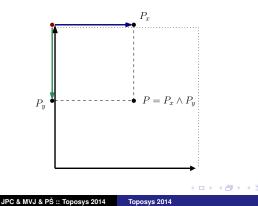


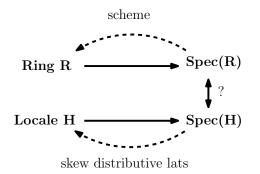
The Dual Space

Spac := Spatial Locales \cong **Sob** := Sober Spaces and homomorphisms

and homeomorphisms

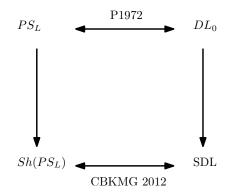
An open of the dual space as the sum of two filters intersecting only in \top and the point in the lattice it corresponds to.





< 口 > < 同 >

The Dual Space



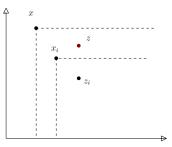
《口》《聞》《臣》《臣》

Topos of Sheaves over \mathcal{H}

Consider the functor $\phi : \mathcal{H} \rightarrow Set$ defined by the sections

 $\phi(x) = \{ \downarrow y \mid y \leq x \},$

for all $x \in \mathcal{H}$, and the restriction map $\chi_y^x : \phi(x) \to \phi(y)$ defined by $\chi_y^x(\downarrow \sigma) = (\downarrow z) \cap (\downarrow y)$ for all $x, y, z \in \mathcal{H}$ such that $y \leq x$.



Topos of Sheaves over \mathcal{H}

Consider the functor $\phi : \mathcal{H} \to Set$ defined by the sections

$$\phi(x) = \{ \downarrow y \mid y \leq x \, \},$$

for all $x \in \mathcal{H}$, and the restriction map $\chi_y^x : \phi(x) \to \phi(y)$ defined by $\chi_y^x(\downarrow \sigma) = (\downarrow z) \cap (\downarrow y)$ for all $x, y, z \in \mathcal{H}$ such that $y \leq x$. Fixing $i \in I$,

$$egin{aligned} \downarrow z \cap \downarrow x_i &= (\bigvee_{j \in J} \downarrow z_j) \cap \downarrow x_i \ &= \bigvee_{j \in J} (\downarrow z_j \cap \downarrow x_i) \ &= \bigvee_{j \in J} \downarrow z_i \cap \downarrow x_j \ &= \downarrow z_i \cap (\bigvee_{j \in J} \downarrow x_j) \ &= \downarrow z_i \cap \downarrow x = \downarrow z_i \end{aligned}$$

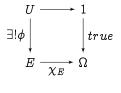
Topos of Sheaves over $\mathcal H$

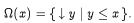
The category of presheaves $Set^{\mathcal{H}^{op}}$ has exponentials: the exponential object z^y is the implication $y \Rightarrow z$.

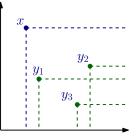
The topos of sheaves on \mathcal{H} is given by the subject classifier including only the closed sieves:

 $\Omega(x) = \{\downarrow y \mid y \leq x\}.$

Topos of Sheaves over \mathcal{H}

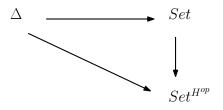






ъ

Topos of Sheaves over \mathcal{H}



Open Problems

- Computation of semisimplicial homology on the topos over H;
- Study of the dual space and respective spectral space;
- Interpretation of the arrow operation in the framework;
- Integration of classical persistence results under this perspective;
- Implementation of new algorithms.

イロト イ団ト イヨト イヨ

DZIEKUJE

< D > < P > < E > < E</p>

DZIEKUJE THANK YOU

< D > < P > < E > < E</p>

DZIEKUJE THANK YOU OBRIGADO